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Abstract

Kidney stones form when mineral salts crystallize in the urinary tract. While most stones exit

the body in the urine stream, some can block the ureteropelvic junction or ureters, leading to

severe lower back pain, blood in the urine, vomiting, and painful urination. Imaging technolo-

gies, such as X-rays or ureterorenoscopy (URS), are typically used to detect kidney stones.

Subsequently, these stones are fragmented into smaller pieces using shock wave lithotripsy

(SWL) or laser URS. Both treatments yield subtly different patient outcomes. To predict suc-

cessful stone removal and complication outcomes, Artificial Neural Network models were

trained on 15,126 SWL and 2,116 URS patient records. These records include patient met-

rics like Body Mass Index and age, as well as treatment outcomes obtained using various

medical instruments and healthcare professionals. Due to the low number of outcome fail-

ures in the data (e.g., treatment complications), Nearest Neighbor and Synthetic Minority

Oversampling Technique (SMOTE) models were implemented to improve prediction accu-

racies. To reduce noise in the predictions, ensemble modeling was employed. The average

prediction accuracies based on Confusion Matrices for SWL stone removal and treatment

complications were 84.8% and 95.0%, respectively, while those for URS were 89.0% and

92.2%, respectively. The average prediction accuracies for SWL based on Area-Under-the-

Curve were 74.7% and 62.9%, respectively, while those for URS were 77.2% and 78.9%,

respectively. Taken together, the approach yielded moderate to high accurate predictions,

regardless of treatment or outcome. These models were incorporated into a Stone Decision

Engine web application (http://peteranoble.com/webapps.html) that suggests the best inter-

ventions to healthcare providers based on individual patient metrics.

Introduction

The incidence and prevalence of kidney stones in people is increasing globally presumably due

to dietary practices and global warming [1]. In the United States, about 11% of the population
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will have kidney stones in their lifetime [2]. The increasing incidence of kidney stones presents

a dilemma to healthcare professionals because the ‘optimal’ intervention to remove the stones

varies by approach [3], patient health, age, preference, and body size [4–8], stone size and com-

position [9], and stone location [10].

Two interventions most often used to remove/fragment stones, include: shock wave litho-

tripsy (SWL) and laser ureterorenoscopy (URS). SWL uses high-energy shock waves to frag-

ment stones into small particles that eventually pass out of the body in urine [11]. This

intervention is a less invasive than URS but not as effective in terms of attaining stone-free sta-

tus–that is, patients might require additional treatments [12]. A laser attached to the URS is

used to fragment stones, which are subsequently either transported out of the body in the

urine stream or removed during the procedure [13]. Two drawbacks of URS are: higher inci-

dence of treatment complications and more costly, sometimes requiring longer hospital stays

than patients treated by SWL [14, 15]. A survey of intervention decisions suggests most

patients prefer SWL to URS [16] and a recent Evidence Review by NIH states only ‘small bene-

fits of URS over SWL’—yet clinical and cost effectiveness favor SWL [17]. Selecting the ‘opti-

mal’ intervention for patients is therefore not straightforward; an approach that helps

healthcare professionals with these decisions is highly desired.

Artificial neural network (ANN) models are computational systems or algorithms designed

to simulate human intelligence and perform tasks that typically require human intelligence.

These models learn from data and experience, enabling them to make predictions, recognize

patterns, and solve problems without being explicitly programmed for each specific task. They

are now widely used in urology to detect kidney stones in videos [18] and images [19–24], pre-

dict sepsis risk [25, 26] and lithotripsy treatment outcomes [27–29], and set SWL machine

parameters [30].

The objective of this study was to build a Stone Decision Engine (SDE) based on mining a

database containing information on previous interventions (SWL and URS). The databases

include information on patient metrics (such as age and Body Mass Index (BMI), stone

removal successes/failures, and evidence of treatment complications. We determined the pre-

diction probabilities for various treatment outcomes based on these metrics and the uncer-

tainty of the predictions by repeated independent statistical analyses. ANN models were used

to find patterns in the 17242 patient records. The equations of forty models were extracted and

incorporated into a SDE application that healthcare professionals can use in patient counseling

to predict SWL or URS outcomes based on patient metrics.

Materials and methods

Ethics statement

The research relied on the analysis of anonymized data accessible through the Kidney Stone

Registry. The anonymous dataset lacks identifiable information, ensuring no possible linkage

to personal data.

Electronic medical data

The database consisted of 80,000+ patients who had undergone SWL or URS treatments at

multiple sites throughout the United States. We selected 20,000 patient records between Feb-

ruary 19th 2018 and August 31st, 2021. We then excluded records with missing or erroneous

data to end up with 17242 patient records. Individual patient consent was not required as no

patient identifiable records were used in the study.

A variety of SWL and URS instruments were used to treat patients. Specifically, SWL was

performed using the Dornier Compact Delta II (DCD2), Dornier Compact Delta III (DCD3),
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Dornier Compact Sigma (DCS) (Weßling, Germany), Storz F2 (SF2), or Storz SLX-T (SSLXT)

instruments by experienced physicians. Laser URS was performed using Dornier Medilas H20

DMH20, Dornier Medilas H30 (DMH30), Dornier Medilas H35 (DMH35), Lumenis Versa-

pulse 100 watt (LV100) (San Jose, CA), Lumenis Versapulse 20 watt (LV20), or Odyssey Con-

vergent 30 watt (OC30) (Alameda, CA) instruments by experienced physicians.

Coding of variables in the data sets

SWL data. Label, coding, units: Anticoagulants used prior to treatment (True: 0, False: 1),

DCD2 (True: 1, False: 0), DCD3 (True: 1, False: 0), DCS (True: 1, False: 0), SF2 (True: 1, False:

0), SSLXT (True: 1, False: 0), Stone location in ureters (True: 1, False: 0), Stone location in kid-

ney (True: 1, False: 0), Stone not specifically located in the kidney or ureters (0ther location)

(True: 1, False: 0), Sex (Male: 1, Female: 0), Body Mass Index (BMI, kg/m2), Age of the patient

at time of the procedure (years), Stone width (mm), Stone length (mm), Stone side (Left: 0,

Right,1), Other medical conditions (e.g., Diabetes or other without diabetes, True: 1, False: 0).

URS data. Label, coding, units: Sex (Male: 1, Female: 0), DMH20 (True: 1, False: 0),

DMH30 (True: 1, False: 0), DMH35 (True: 1, False: 0), LV100 (True: 1, False: 0), LV20 (True:

1, False: 0), OC30 (True: 1, False: 0), Age of the patient at time of the procedure (years), BMI

(kg/m2).

Target outcomes. Two definitions of stone removal outcomes were used: (i) ‘stone free’

or stone fragments < 4 mm were assigned a value of ‘0’, and (ii) stone fragments > 4mm or

‘no change in stone size’ were assigned a value of ‘1’. These outcomes were determined by a

physician’s review of the follow-up X-ray images and confirmed with patient records indicat-

ing no further treatment was required. There were two definitions of ‘treatment complica-

tions’: (i) a patient with ‘no complication’ was assigned a value of ‘0’, and (ii) a patient with a

treatment complication was assigned a value of ‘1’. Typical treatment complications included

pain, fever, urinary tract infection, hematoma, post-operational bleeding, "steinstrasse", pro-

longed dysuria, ureteral perforation, burning, hydronephrosis, acute kidney injury, tachycar-

dia, prolonged gross hematuria, and obstructing fragments.

Standardization of the data. Prior to building the ANN models, continuous variables

were standardized by their corresponding minimum (min) and maximum (max) with the

formula:

standardized variable = (raw variable–variable min)/ (variable max–variable min)

ANN modeling

The data sets were randomly split into 70% training, 15% testing, and 15% validation. The

architecture of the ANN models consisted of an input, a hidden, and an output layer. The

number of neurons in input layer was dependent on the number of input variables. The opti-

mal number of neurons in the hidden layer was empirically determined by selecting a range of

numbers (e.g., the square root of the number of inputs to the actual number of inputs) and

assessing model accuracy using a Confusion Matrix (i.e., (True positives + True negatives)/

(False Positives + False Negatives + True Positives + True Negatives). The output layer con-

sisted of a single neuron, the target variable (i.e., stone removal success or treatment complica-

tion). In some cases, the model accuracy was assessed by including all data (i.e., training,

testing and validation data sets) into the Confusion Matrix, while in others, only the combined

testing/validation data sets were used, as specified in the Results section below. The Neuroet

package [31] settings used for training were as follows: scaling method, standard linear func-

tion (0, 1); transfer function for input and output neurons, Log-Sigmoid; training method,

Levenberg-Marquardt. Training was automatically stopped when the global error between
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outputs and targets was minimized after several iterations. Weights and biases were retained

to build the final equations in MS Excel and C++ programs.

Balanced and SMOTED data. Preliminary studies showed that the ANN models had dif-

ficulties in learning the decision boundaries due to severe imbalances of the data. For example,

more patient records had successful stone removals than unsuccessful ones and even fewer

patient records involved treatment complications. To address this issue, two data augmenta-

tion approaches were used: (i) balancing the training data set with equal number of records for

each group (i.e., equal number of successes and failures), and (ii) increasing the number of rec-

ords in the minority class by synthesizing data using Synthetic Minority Oversampling Tech-

nique (SMOTE) [32].

The balanced data set approach involved randomly selecting x number of records from the

majority class to make them equal in number to those in the minority class. The SMOTE

approach involved: (i) splitting the standardized data set into 70% training and 30% testing/

validation, and retaining the training data, (ii) using a Nearest Neighbor model (k = 3 to 5) to

select data points in the minority class and drawing vectors between neighboring points; and

(iii) randomly generating synthetic data along the vectors until the number of records in the

minority equal the number of records in the majority.

The training data from the approaches were then used to build the ANN models. The

weights and biases of each ANN model were incorporated into equations in C++.

Suggested intervention. The intervention was calculated by scoring the predicted aver-

ages and standard deviations for successful stone removal and treatment complications. The

scoring system was as follows: an average prediction<0.5 was scored as 0; a standard deviation

<0.25 was scored as 0; an average prediction > = 0.5 was scored as 1; and a standard deviation

that was > = 0.25 was scored as 1. The scores for SWL stone removal and treatment complica-

tions were summed, as were the scores for URS stone removal and treatment complications. If

the sum of SWL was greater than the sum of URS, then the suggested intervention was “URS”.

If the sum of URS was greater than the sum of SWL, then the suggested intervention was

“SWL”. If the sum of both SWL and URS were 0, then the suggested intervention was ‘SWL or

URS”. If the sum of SWL and URS was greater or equal to 5 then the suggested intervention

was “Uncertain”.

Statistical and data analyses

Averages, standard deviations, and one- or two- tailed Student T-tests were implemented in

Excel spreadsheets. One-tailed T-tests were used when direction of the test was relevant and

two-tailed T-tests when the direction of the test was unknown. The data was SMOTED using

Jupyter notebooks running Python libraries. All ANN models were built and tested using the

bench marked Neuroet package downloaded from http://peteranoble.com/software.html.

Library (pROC) in the R-program 4.1.2 (2021-11-01) was used to calculate Area-under-the

Curve (AUC).

Results

Descriptive statistics

The Storz SLX-T instrument was more represented (55.9%) in the SWL data set than the Storz

F2 (30.7%) and Dornier instruments (13.4%) (Table 1). Also, more stones were in the kidney

(i.e., Lower, Mid, Upper Calyx, Pelvis, and Ureterovesical Junction; 77.8%) than the ureters

(Lower, Mid, Upper Ureters and Ureteral Pelvic Junction; 21.6%) or other locations (Bladder,

Calcified Stent and Staghorn; <1.0%). Slightly more than half of the patients were overweight

healthy males with an average age of 57 years and kidney stones of 8 to 9 mm in diameter.
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Treatment complications were relatively low (<5%) and most kidney stones (84.4%) were suc-

cessfully removed by SWL.

The Lumenis Versapulse (100 watt and 20 watt) instruments were more represented

(63.3%) in the URS data set than other instruments (36.7%) (Table 2). The composition of the

patients was similar to those treated by SWL (Table 1) with slightly more than half being over-

weight males with an average age of 57 years. Treatment complications were relatively low

(<5%) and most (92.8%) kidney stones were successfully removed by URS.

Table 2. Descriptive statistics for URS data.

Category Item URS data set (n = 2116)

Instrument used Dornier Medilas H20 26.8% (n = 568)

Dornier Medilas H30 3.5% (n = 75)

Dornier Medilas H35 2.6% (n = 56)

Lumenis Versapulse 100 watt 29.3% (n = 621)

Lumenis Versapulse 20 watt 34.0% (n = 723)

Odyssey Convergent 30 watt 3.4% (n = 73)

Patient Information

Gender (Male = 1; Female = 0) 54% (n = 1142)

Age (years) 56.5 ± 15.5

BMI (kg/m2) 30.4 ± 7.7

Treatment Outcomes Treatment Complications (False = 0; True = 1) 5.3% (n = 113)

Stone Removal (Success = 0; Failure = 1) 7.2% (n = 152)

%, proportion in category; n, number in category.

https://doi.org/10.1371/journal.pone.0301812.t002

Table 1. Descriptive statistics for the SWL data set.

Category Item SWL data set (n = 15126)

Instrument used Dornier Compact Delta II 6.6% (n = 1003)

Dornier Compact Delta III 3.5% (n = 536)

Dornier Compact Sigma 3.1% (n = 472)

Storz F2 30.7% (n = 4651)

Storz SLX-T 56.0% (n = 8464)

Stone Location Ureters 21.6% (n = 3271)

Kidney 77.8% (n = 11771)

0ther locations <1.0% (n = 84)

Stone side (Left = 0, Right = 1) 55.4% (n = 8380)

Stone properties Stone Width (mm) 8.2 ± 4.4

Stone Length (mm) 8.7 ± 4.7

Patient Information Anticoagulants (True = 0; False = 1) 93.8% (n = 14192)

Gender (Male = 1, Female = 0) 55.1% (n = 8338)

BMI (kg/m2) 30.1 ± 6.9

Age at time of procedure (years) 57.0 ± 14.9

Medical Condition (True = 1, False = 0) 7.8% (n = 1173)

Treatment Outcomes Treatment Complications (False = 0; True = 1) 4.8% (n = 732)

Stone Removal (Success = 0; Failure = 1) 15.6% (n = 2353)

%, proportion in category; n, number in category.

https://doi.org/10.1371/journal.pone.0301812.t001
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ANN model architecture

Tests of ANN model architectures for the balanced and SMOTED data sets revealed 16 hidden

neurons were optimal for SWL models and 5 to 7 hidden neurons were optimal for the URS

models.

Balanced data sets. Models trained with the balanced data set yielded reasonable predic-

tion accuracies ranging from 72.4 to 92.8% for Confusion Matrices and 77.3 to 95.9% for AUC

values (Table 3, S1-S8 Tables and S1, S2 Figs in S1 File). However, when the same models were

tested on the entire data sets, model accuracies for Confusion Matrices (balanced data set ver-

sus entire data set) were significantly lower (one-tailed T-test, p<0.04). Similar results were

obtained for AUC (one-tailed T-test, p<0.01). The presumed reason for these differences is

that the minority class was under-represented in the entire data sets. The results demonstrate

the need of an alternative approach to improve model predictions, such as modeling using

SMOTE approaches.

SMOTED data sets. Validation data sets (not used in training or SMOTED) were

employed to assess prediction accuracies of the SMOTED models. Table 4 shows that the pre-

diction accuracies based on the Confusion Matrices were reasonable for the SWL and URS

models ranging from 82.6% to 93.0%. Interestingly, accuracies based on AUC were sub-opti-

mal, with prediction values ranging from 49.6% to 70.5%. This finding suggests AUCs are

more sensitive to the number of minority records (and/or the noise) in the validation data sets

than the Confusion Matrices. We will investigate this issue in the next section below.

Comparison of the prediction accuracies of the models (two-tailed T-tests) using the valida-

tion data sets and the entire data sets revealed no significant differences for the Confusion

Matrix or AUC results (Table 4, S9-S16 Tables and S3, S4 Figs in S1 File). The significance of

this finding is that models trained with the SMOTED data sets yielded relatively consistent

outcomes regardless of the data sets used to test them. Of note, the SMOTED data sets were

not used to test the models–they were only used to train the models.

Table 3. Summary of ANN models developed with balanced datasets and tested on the entire data set. Model accuracies were assessed using a Confusion Matrix and

AUC. The Confusion Matrices and AUCs are shown in S1-S8 Tables and S1, S2 Figs in S1 File.

Treatment Predicted outcome Model accuracy (%) with balanced

data set (70% training: 30% testing/

validation)

Model accuracy (%) with entire

SWL data set (n = 15126)

Model accuracy (%) with entire URS

data set (n = 2116)

Confusion matrix AUC Confusion matrix AUC Confusion matrix AUC

SWL Stone removal 73.7 77.9 22.2 50.1 - -

Treatment complications 81.0 78.8 56.6 64.1 - -

URS Stone removal 92.8 95.9 - 16.0 55.1

Treatment complications 80.1 78.6 - 63.1 51.9

https://doi.org/10.1371/journal.pone.0301812.t003

Table 4. Summary ANN models developed with SMOTED datasets and tested on the validation data set (hold out) and the entire data set. Model accuracies were

assessed using a Confusion Matrix and AUC. The Confusion matrices and AUCs are shown in S9-S16 Tables and S3, S4 Figs in S1 File.

Treatment Predicted outcome Model accuracy (%) SWL

validation data sets

(n = 4539)

Model accuracy (%) using

URS validation data sets

(n = 636)

Model accuracy (%) with

entire SWL data set

(n = 15126)

Model accuracy (%) with

entire URS data set

(n = 2116)

Confusion matrix AUC Confusion matrix AUC Confusion matrix AUC Confusion matrix AUC

SWL Stone removal 82.6 66.9 - - 84.2 72.1 - -

Treatment complications 94.0 50.7 - - 94.4 58.7 - -

URS Stone removal - - 89.4 64.8 - - 88.6 55.1

Treatment complications - - 88.2 49.6 - - 92.6 56.4

https://doi.org/10.1371/journal.pone.0301812.t004
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Predictions using ensembled ANN models

Ensemble processing was used to improve upon model predictions and assess the variability of

the predictions of each patient record. This was accomplished by calculating the averages and

standard deviations of the predictions from 10 independently SMOTED ANN models. The

averaged values were then used to assess model performance (Confusion matrix and AUC).

Model accuracies were 85.0% for SWL stone removal results based on the Confusion Matrix

(Table 5) and 74.8% for results based on AUC (Fig 1A). Model accuracy was 95.1% for SWL

treatment complication results based on the Confusion Matrix (Table 6) and 66.3% for those

based on AUC (Fig 1B).

Model accuracy was 91.2% for URS stone removal results based on the Confusion Matrix

(Table 7) and 77.2% for those based on the AUC (Fig 1C), suggesting moderate to high preci-

sion. Model accuracy was 93.2% for URS treatment complication results based on the Confu-

sion matrix (Table 8) and 78.9% for results based on AUC (Fig 1D).

The model accuracies for the averaged SMOTED ANN models based on the entire data sets

are summarized in Table 9. Two-way T-tests showed no significant differences in predicted

outcomes based on Confusion Matrices of individually trained ANN models (Table 4) and

those of averaged ANN models (Table 9). However, there were significant improvements in

predictions based on AUC results (P<0.027). Specifically, the averaged AUC values increased

from 58.0% to 73.4%, suggesting that noise in the data was responsible for the substantially

lower AUC results previously reported (Table 4).

In summary, ensemble models improved predictions in two ways: (i) it significantly

improved AUC results, and (ii) it enabled Users to access the precision of predictions; those

having low standard deviations versus those with high standard deviations, which is important

for making intervention decisions of individual patients with kidney stones based on the SDE.

Assessment of SDE performance

The incorrect SDE predictions could be separated into two categories: (i) those within one

standard deviation of the actual value, and (ii) those outside the standard deviation. Incorrect

predictions in the first category ranged from 1.1% to 6.1% of the total depending on interven-

tion and outcome, while those in the second ranged from 2.6% to 8.4% (Table 10). Combining

the number of correct predictions with the incorrect predictions in the first category revealed

that the SDE was reasonably accurate with values ranging from 91.5% to 97.4% (Table 10).

Individual patients. Since the SDE was designed to predict outcomes for individual

patients, predictions of 10 randomly selected individual patient records were compared to cor-

responding actual values in the SWL and URS data sets (Table 11) and the suggested interven-

tion was determined.

SWL stone removal and treatment complications. All actual values for SWL stone

removal indicate that the stones were<4 mm after treatment. The SDE correctly predicted 9

records were <0.5. One of the records was >0.5 but also had a large standard deviation,

Table 5. Confusion matrix based on averaged predictions of ten ANN models trained on the SMOTED SWL stone removal data set and tested with the entire data

set.

Actual (below) /Predictions (across) 0 1 Sum

0 82.5% (n = 12475) 2.0% (n = 298) 12773

1 13.0% (n = 1967) 2.6% (n = 386) 2353

85.0% (n = 15126)

0, stone removal success; 1, stone removal failure.

https://doi.org/10.1371/journal.pone.0301812.t005
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indicating the prediction was within one standard deviation of the correct answer (Table 11).

The predictions represent 10 of the 13848 records (91.5%) shown in Table 10.

Nine of the 10 actual records for SWL treatment complications were ‘0’, indicating no treat-

ment complications, but one record was ‘1’ indicating a treatment complication (Table 11).

The SDE correctly predicted 9 of 10 records but one treatment (i.e., SWL 4) was predicted as a

treatment complication with high standard deviation. The significance of this finding is the

prediction has high uncertainty but within one standard deviation of the correct answer. The

correct predictions are represented as 9 for the 14379 records (95.1%) shown in Table 10 and

the uncertain one represents 162 of the 15126 records (1.1%) that are classified as incorrect but

within one standard deviation of the correct prediction.

Six of 10 suggested interventions were categorized, as “SWL or URS” because SWL and

URS predicted values were<0.5 (Table 11). Three of the suggested interventions were URS

(only) because the scoring system showed that SWL was greater than URS. One of the sug-

gested interventions was SWL (only) because the standard deviation of URS treatment compli-

cation prediction was >0.25.

Fig 1. AUCs for averaged predictions from ten ANN models trained on SMOTED SWL stone removal data set (A) and

treatment complication (B) and tested with the entire data set (n = 15126 records). AUC for averaged predictions from

ten ANN models trained on SMOTED URS stone removal data set (C) and treatment complication data set (D) and

tested with the entire data set (n = 2116 records).

https://doi.org/10.1371/journal.pone.0301812.g001
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URS stone removal and treatment complications. Nine of the 10 actual records for URS

stone removal were ‘0’, indicating successful stone removal, but one record was ‘1’, indicating

that the stone was>4mm after treatment (Table 11). The SDE correctly predicted 8 of the 10

records. One of the two incorrectly predicted records had a high standard deviation (20%)

indicating that the prediction was within one standard deviation of the correct value. This

record represents one of the 130 (6.1%) shown in Table 10. The other record was a false nega-

tive (in bold) and represents one of the 102 records (4.8%) in Table 10.

All ten actual records for URS treatment complications were ‘0’, indicating no treatment

complications and the SDE correctly predicted these records (Table 11). These predictions

represent 10 of the 1950 records (92.2%) shown in Table 10.

Table 6. Confusion matrix based on averaged predictions of ten ANN models trained on the SMOTED SWL treatment complication data set and tested with the

entire data set.

Actual (below) /Predictions (across) 0 1 Sum

0 94.9% (n = 14355) 0.3% (n = 39) 14394

1 4.7% (n = 708) 0.2% (n = 24) 732

95.1% (n = 15126)

0, no treatment complication; 1, treatment complication.

https://doi.org/10.1371/journal.pone.0301812.t006

Table 7. Confusion matrix based on averaged predictions of ten ANN models trained on the SMOTED URS stone removal data set and tested with the entire data

set.

Actual (below) /Predictions (across) 0 1 Sum

0 89.9% (n = 1902) 2.9% (n = 62) 1964

1 5.9% (n = 125) 1.3% (n = 27) 152

91.2% (n = 2116)

0, successful stone removal; 1, stone removal failure.

https://doi.org/10.1371/journal.pone.0301812.t007

Table 8. Confusion matrix based on averaged predictions of ten ANN models trained on the SMOTED URS treat-

ment complication data set and tested with the entire data set.

Actual (below) /Predictions (across) 0 1 Sum

0 92.2% (n = 1950) 2.5% (n = 53) 2003

1 4.3% (n = 90) 1.1% (n = 23) 113

93.2% (n = 2116)

0, no treatment complication; 1, treatment complication.

https://doi.org/10.1371/journal.pone.0301812.t008

Table 9. Summary of model accuracies for ensembled SMOTED ANN models (n = 10) tested with entire data sets. Model accuracies were assessed using Confusion

Matrix and AUC.

Treatment Predicted outcome Model accuracy (%) with entire SWL data set

(n = 15126)

Model accuracy (%) with entire URS data set

(n = 2116)

Confusion matrix AUC Confusion matrix AUC

SWL Stone removal 85.0 74.8 - -

Treatment complications 95.0 66.3 - -

URS Stone removal - - 91.2 77.2

Treatment complications - - 93.2 78.9

https://doi.org/10.1371/journal.pone.0301812.t009
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Six of 10 suggested interventions were categorized, as “SWL or URS” because SWL and

URS predicted values were<0.5 (Table 11). Three records were categorized as SWL (only)

because the scoring system found that URS> SWL. One record was categorized as ‘URS’

because the scoring system found that URS< SWL.

In summary, the SDE demonstrated reasonable accuracy in predicting outcomes based on

patient information. To aid healthcare providers in counseling patients and determining the

optimal treatment options for stones in the urinary tract, we have developed a user-friendly

SDE web interface, which can be accessed at http://peteranoble.com/webapps.html.

Discussion

The primary motivation of our study was driven by the desire to provide healthcare profes-

sionals with a data-driven tool to accurately predict treatment outcomes based on patient

information and intervention (SWL and URS). To our knowledge, this is the first large-scale

Table 10. Prediction performance of SDE (40 model equations) by intervention and outcome.

Intervention (across) SWL (n = 15126 records) URS (n = 2116 records)

Outcome Stone removal Treatment complications Stone removal Treatment complications

Correct predictions 85.0% (n = 12861) 95.1% (n = 14379) 89.0% (n = 1884) 92.2% (n = 1950)

Incorrect predictions but within STD 6.5% (n = 987) 1.1% (n = 162) 6.1% (n = 130) 5.1% (n = 110)

Incorrect Prediction 8.4% (n = 1278) 3.9% (n = 585) 4.8% (n = 102) 2.6% (n = 56)

Correct predictions and/or incorrect predictions within STD 91.5% 96.2% 95.1% 97.3%

https://doi.org/10.1371/journal.pone.0301812.t010

Table 11. Ten random selected examples of the prediction performance of SDE by intervention, outcome and suggested intervention.

Intervention by

individual patient

Actual stone removal (SR)

(0 = Success; 1 = Failure)

Predicted

SR ± Stdev

Actual treat complications (TC)

(False = 0; True = 1)

Predicted

TC ± Stdev

Suggested

Intervention

SWL 1 0 0.05 ± 0.03 0 0.12 ± 0.06 SWL_or_URS

SWL 2 0 0.32 ± 0.28 1 0.68 ± 0.22 URS

SWL 3 0 0.06 ± 0.18 0 0.05 ± 0.16 SWL_or_URS

SWL 4 0 0.48 ± 0.37 0 0.70 ± 0.42* URS

SWL 5 0 0.26 ± 0.24 0 0.18 ± 0.23 SWL_or_URS

SWL 6 0 0.06 ± 0.17 0 0.06 ± 0.17 SWL_or_URS

SWL 7 0 0.01 ± 0.14 0 0.28 ± 0.35 SWL_or_URS

SWL 8 0 0.03 ± 0.13 0 0.01 ± 0.20 SWL

SWL 9 0 0.07 ± 0.13 0 0.06 ± 0.16 SWL_or_URS

SWL 10 0 0.68 ± 0.39* 0 0.07 ± 0.21 URS

URS 1 0 0.00 ± 0.14 0 0.18 ± 0.29 URS

URS 2 0 0.76 ± 0.24 0 0.02 ± 0.18 SWL

URS 3 0 0.10 ± 0.18 0 0.01 ± 0.15 SWL_or_URS

URS 4 0 0.00 ± 0.14 0 0.01 ± 0.13 SWL_or_URS

URS 5 0 0.00 ± 0.13 0 0.00 ± 0.12 SWL_or_URS

URS 6 0 0.47 ± 0.20 0 0.04 ± 0.14 SWL_or_URS

URS 7 0 0.00 ± 0.15 0 0.00 ± 0.12 SWL_or_URS

URS 8 1 0.37 ± 0.20* 0 0.27 ± 0.29 SWL

URS 9 0 0.44 ± 0.20 0 0.27 ± 0.29 SWL

URS 10 0 0.19 ± 0.20 0 0.01 ± 0.18 SWL_or_URS

*, Incorrect prediction but within standard deviation (Stdev); Bold, incorrect prediction.

https://doi.org/10.1371/journal.pone.0301812.t011
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study to predict stone treatment outcomes using ANN modeling. Our study is unique from

other studies because the interventions took place at multiple institutions (n = 41+) by differ-

ent medical professionals (n = 41+) using a variety of SWL and URS instruments (Tables 1

and 2). Hence, the results should be generalizable and not specific to a particular institution,

healthcare professional, or instrument. While there are specific guidelines for the management

of urolithiasis set by the American Urological Association (AUA) and European Association

of Urologists (EAU), our study provides recommendations based on past treatments that in

theory should align with these guidelines.

The secondary motivation was to demonstrate the utility of ANN models to solve complex

healthcare problems. Our initial studies using balanced data sets yielded sub-optimal results

(Table 3), presumably due to the minority class biasing the predictions when tested with the

entire data sets. The SMOTED data substantially increased the representation of the minority

class and consequently improved predictions, as shown in this study and others [33–36].

Ensembling by averaging the predictions of multiple diverse models reduced the error and

improved upon the final predictions (compare Tables 4 to 9). The diverse models in our study

were due to different random splits of the data, randomization of the SMOTE process, and

randomization of the initial sets of weights and biases of the ANN models prior to training.

Previous studies have used ensemble processes to improve predictions over those made by

individually trained models [37, 38]. An additional advantage of the ensemble process in our

study was that the variability of the predictions for individual patient records could be

determined.

The strengths of our study are that the models were based on 17242 patients–far more than

other studies; and the predictions should be generalizable because the data were collected from

many different institutions, with different healthcare professionals, and a variety of SWL and

URS instruments. One limitation of our study is its retrospective design, which may have led

to biases and reduced the predictive accuracies of the ensembled models. Ongoing prospective

studies may improve upon our findings.

Model predictions based on confusion matrix versus those on AUC

We investigated prediction accuracies using Confusion Matrices and AUCs to highlight simi-

larities and differences of the two assessment approaches.

A Confusion Matrix measures the performance of a classifier using a fixed threshold. Pre-

dictions <0.5, for example, were classified as ‘0’, which corresponds to either ‘successful stone

removal’ or ‘no treatment complications’, and predictions >0.5 were classified as ‘1’, which

corresponds to ‘stone removal failure’ or ‘treatment complications’. The accuracy of a model

was defined by the sum of the True Positives and True Negatives divided by the total number

of samples and reported as a percent.

In contrast, AUC examines the performance of a classifier without any fixed threshold—

every possible threshold is examined and plotted as a point on the curve—and it is reported as

a percent. The two approaches differ because AUC is apparently more sensitive to noise in the

data than the Confusion Matrix, as demonstrated in this study by the improvement of AUC

values after multiple independent predictions were ensembled.

Input variables to the SDE

Previous studies have shown SWL variables affecting treatment outcomes include gender [39–

42], age [39, 42–44], SSD [40, 45–50], BMI [39, 50], stone number [39, 42, 43], stone size [39–

43, 46, 47, 50–56], stone location [39, 41–43, 48, 51, 52, 56, 57], and stone characteristics [33–
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48, 51, 54–58]. Variables affecting URS outcomes include stone number [59, 60], stone size

[53, 59], stone location [59, 60], and stone characteristics [59, 60].

While some overlap exists in the variables affecting SWL and URS outcomes, more vari-

ables have been shown to affect SWL outcomes than URS outcomes. These differences were

considered during the construction of the SDE and explain the different number of input vari-

ables used to predict SWL and URS outcomes in our study. The choice of input variables was

also dependent on the number of missing or erroneous values (e.g., BMI of>100) in the data

sets since rows and columns containing numerous missing or erroneous values were excluded

from the study.

Comparison to other studies in the literature

Nomograms and mathematical models have been used to predict SWL and URS outcomes in

many previous studies. Nomograms are graphical decision-making tools that are easy to use,

and they do not require knowledge of the underlying equation that the nomogram represents.

Predictive mathematical models consist of coefficients that are multiplied by input variables

and summed to yield a predictive outcome. ANN models fall into this category with the coeffi-

cients being the weights and biases of the trained network.

Here, we briefly document previous studies (in chronological order by intervention) and

where appropriate, mention their limitations.

SWL studies. Kanao et al. [61] created one of the first nomograms to predict stone-free

rates based on 435 patients. While the nomogram considered stone size, stone location, and

stone number, critics argued that their approach was inadequate [49] because it did not con-

sider stone density and skin-to-stone distance (SSD).

Vakalopoulos et al. [39] constructed a mathematical model predicting the successful out-

comes of 1712 patients. The approach was unique from others because the equations were pre-

sented. The stated limitations are: (i) different stone locations (i.e., renal, ureter, and total)

required different models; (ii) the models would have to be adjusted for different lithotripters;

and (iii), the model needed to be validated prospectively to prove its usefulness.

Two studies developed nomograms predicting SWL stone-free rates in children. The Onal

et al. [62] model was based on 395 patients. The limitation of the study was that the model was

based on one urologist at a single institution, and a single instrument and the approach has

not been externally validated. The Dongan and Tekgul [63] predicted stone-free rates and

complication rates. Yanaral et al. [64] argued that both Onal et al. [62] and Dongan and Tekgul

[63] studies could be improved by the addition of variables such as stone density, degree of

obstruction, shock power, and number of shocks applied.

Wiesenthal et al. [65] examined 422 patients to find that predictors of successful lithotripsy

differed by stone location and therefore developed two mathematical equations: one for the

kidney and the other for the ureter. The stated limitations are that the models did not consider

the different types of lithotripters, nor did they include a diversity of institutions and

operators.

Tran et al. [58] developed the Triple D score to predict stone-free rates in 235 patients. The

model was developed by applying threshold values to AUC curves for ellipsoid stone volume,

SSD, and stone density. The score was based on the sum of the number of parameters that fell

below the thresholds. The research has been validated by Ichiyanagi et al. [66] with 226

patients.

Kim et al. [57] predicted stone-free rates for 3028 patients from three independent institu-

tions and developed a nomogram based on sex, stone location, stone number, stone size, mean
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Hounsfield unit and grade of hydronephrosis. The model could also be used to advise patients

on the likelihood of single or multiple SWL treatments.

Ickiyanagi et al. [66] developed the Quadruple D score based on 226 patients to predict

renal stone free status. The scoring system was defined as the sum of the Triple D score [56]

and a number based on stone location in the kidney. The stated limitations were: (i) the score

did not consider stone morphology or hydronephrosis grade; (ii) the score was not tested on

stones in the ureters; (iii) the study had limited diversity as it was based on Japanese patients;

and (iv) it has not been externally validated.

Yoshioka et al. [56] developed an integer score-based prediction model (S3HoCKwave

score) for assessing SWL failure based on 2271 patients. The study was conducted at several

medical centers and was shown to be superior to Triple D score developed by Tran et al. [58].

In the model, continuous outcomes were converted to dichotomous outcomes, and then mul-

tivariable logistic regression analysis calculated the coefficients for each prediction. The values

of each prediction were rounded, multiplied by 10 and summed. Assessment of performance

was based on internal and external validation. The stated limitations are that the study was

based on Asian population and limited to non-contrast-enhanced computed tomography.

URS studies. Resorlu et al. [59] developed a scoring system to predict stone free status

based on 207 patients using the following variables: stone size, composition, stone number,

renal malformation and lower pole infundibulopelvic angle. Each variable (excluding compo-

sition) was scored as either zero or one based on yes or no answers. While the system was lim-

ited to a few patients, it has been externally verified by Wang et al. [67] and Bozkurt et al. [68].

Imamura et al. [69] developed a nomogram based on 412 patients that predicted stone free

rate. De Nunzi et al. [70] validated the Imamura nomogram using 275 European patients.

Jung et al. [71] developed a modified S-ReSC score based on 88 patients to predict stone

free status; but the low number of patients limits the usefulness of the score although it has

been externally evaluated [68].

Ito et al. [60] develop a scoring system for stone free status based on 310 patients using

stone volume, stone location, operator experience, stone number and presence of hydrone-

phrosis. The score was derived by the sum of individual scores. The stated limitation of the sys-

tem is too few patients but it has been externally evaluated [68].

Xiao et al. [72] developed the R.I.R.S system based on 382 patients to predict stone free sta-

tus of 4 parameters: renal stone density, inferior pole stone, renal infundibular length and

cumulative stone diameter. It has been externally evaluated [68].

Bozkurt et al. [68] examined four of the five URS nomograms mentioned above [i.e., 59, 60,

71, 72] with 949 patients from two institutions. While the nomograms predicted stone free sta-

tus and treatment complications with varying degrees of success, Bozkurt stated that the

nomograms have limitations, and an ideal system has yet to be developed.

Nomogram for SWL, retrograde intrarenal surgery (RIRS), and percutaneous nephro-

lithotomy (PNL) interventions. Micali et al. [73] develop a nomogram for predicting treat-

ment failure of solitary kidney stones between 1 and 2 cm in size for SWL, RIRS and PNL. The

input data for their model was preoperative clinical data. They stated that external validation

of the current nomogram was needed to determine its reproducibility and validity.

Conclusions

This is the first large-scale multi-site study to develop a SDE that accurately predicts SWL and

URS outcomes for prospective patients. A practical outcome of this research is a SDE web

interface that can help healthcare providers in counseling patients and determining the opti-

mal treatment options: http://peteranoble.com/webapps.html.

PLOS ONE Prediction of treatment outcomes for shock wave lithotripsy and laser ureterorenoscopy patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0301812 May 2, 2024 13 / 18

http://peteranoble.com/webapps.html
https://doi.org/10.1371/journal.pone.0301812


Supporting information

S1 File. The file ‘Supplementary Materials.docx’ contains 16 tables and 4 figures.

(DOCX)

Acknowledgments

We thank Dr. Alex Pozhitkov from the City of Hope Cancer Research Center for his critical

comments in an earlier version of the manuscript and testing the SDE web interface. We also

thank Derek Soetemans and Ifeanyi Okwuchi from the Focus21 team for their help in critical

improvements in earlier versions of the manuscript.

Author Contributions

Conceptualization: Peter A. Noble.

Formal analysis: Peter A. Noble.

Investigation: Peter A. Noble.

Methodology: Peter A. Noble.

Project administration: Peter A. Noble.

Software: Peter A. Noble.

Supervision: Peter A. Noble, Blake D. Hamilton, Glenn Gerber.

Validation: Peter A. Noble.

Visualization: Peter A. Noble.

Writing – original draft: Peter A. Noble.

Writing – review & editing: Peter A. Noble, Blake D. Hamilton, Glenn Gerber.

References
1. Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and asso-

ciated risk factors. Rev Urol. 2010 Spring; 12(2–3):e86–96. PMID: 20811557; PMCID: PMC2931286.

2. Scales CD Jr, Smith AC, Hanley JM, Saigal CS; Urologic Diseases in America Project. Prevalence of

kidney stones in the United States. Eur Urol. 2012 Jul; 62(1):160–5. https://doi.org/10.1016/j.eururo.

2012.03.052 Epub 2012 Mar 31. PMID: 22498635; PMCID: PMC3362665.

3. Scales CD Jr, Tasian GE, Schwaderer AL, Goldfarb DS, Star RA, Kirkali Z. Urinary Stone Disease:

Advancing Knowledge, Patient Care, and Population Health. Clin J Am Soc Nephrol. 2016 Jul 7; 11

(7):1305–12. https://doi.org/10.2215/CJN.13251215 Epub 2016 Mar 10. PMID: 26964844; PMCID:

PMC4934851.

4. Joshi HB, Johnson H, Pietropaolo A, Raja A, Joyce AD, Somani B, et al. Urinary Stones and Interven-

tion Quality of Life (USIQoL): Development and Validation of a New Core Universal Patient-reported

Outcome Measure for Urinary Calculi. Eur Urol Focus. 2021 Jan 8:S2405-4569(20)30313-8. https://

doi.org/10.1016/j.euf.2020.12.011 Epub ahead of print. PMID: 33423970.

5. Moudi E, Hosseini SR, Bijani A. Nephrolithiasis in elderly population; effect of demographic characteris-

tics. J Nephropathol. 2017 Mar; 6(2):63–68. https://doi.org/10.15171/jnp.2017.11 Epub 2016 Dec 17.

PMID: 28491855; PMCID: PMC5418072.

6. Krambeck AE, Lieske JC, Li X, Bergstralh EJ, Melton LJ 3rd, Rule AD. Effect of age on the clinical pre-

sentation of incident symptomatic urolithiasis in the general population. J Urol. 2013 Jan; 189(1):158–

64. https://doi.org/10.1016/j.juro.2012.09.023 Epub 2012 Nov 16. PMID: 23164393; PMCID:

PMC3648841.

7. Mains EAA, Blackmur JP, Sharma AD, Gietzmann WK, El-Mokadem I, Stephenson C, et al. Shockwave

Lithotripsy Is an Efficacious Treatment Modality for Obese Patients with Upper Ureteral Calculi: Logistic

Regression and Matched-Pair Analyses from a Dedicated Center Comparing Treatment Outcomes by

PLOS ONE Prediction of treatment outcomes for shock wave lithotripsy and laser ureterorenoscopy patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0301812 May 2, 2024 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0301812.s001
http://www.ncbi.nlm.nih.gov/pubmed/20811557
https://doi.org/10.1016/j.eururo.2012.03.052
https://doi.org/10.1016/j.eururo.2012.03.052
http://www.ncbi.nlm.nih.gov/pubmed/22498635
https://doi.org/10.2215/CJN.13251215
http://www.ncbi.nlm.nih.gov/pubmed/26964844
https://doi.org/10.1016/j.euf.2020.12.011
https://doi.org/10.1016/j.euf.2020.12.011
http://www.ncbi.nlm.nih.gov/pubmed/33423970
https://doi.org/10.15171/jnp.2017.11
http://www.ncbi.nlm.nih.gov/pubmed/28491855
https://doi.org/10.1016/j.juro.2012.09.023
http://www.ncbi.nlm.nih.gov/pubmed/23164393
https://doi.org/10.1371/journal.pone.0301812


Skin-to-Stone Distance. J Endourol. 2020 Apr; 34(4):487–494. https://doi.org/10.1089/end.2019.0717

Epub 2020 Mar 27. PMID: 32030994.

8. Raja A, Hekmati Z, Joshi HB. How Do Urinary Calculi Influence Health-Related Quality of Life and

Patient Treatment Preference: A Systematic Review. J Endourol. 2016 Jul; 30(7):727–43. https://doi.

org/10.1089/end.2016.0110 Epub 2016 May 16. PMID: 27080725.

9. Ramesh S, Chen TT, Maxwell AD, Cunitz BW, Dunmire B, Thiel J, et al. In Vitro Evaluation of Urinary

Stone Comminution with a Clinical Burst Wave Lithotripsy System. J Endourol. 2020 Nov; 34(11):1167–

1173. https://doi.org/10.1089/end.2019.0873 Epub 2020 Mar 20. PMID: 32103689; PMCID:

PMC7698855.

10. Legemate JD, Marchant F, Bouzouita A, Li S, McIlhenny C, Miller NL, et al. Outcomes of Ureteroreno-

scopic Stone Treatment in 301 Patients with a Solitary Kidney. J Endourol. 2017 Oct; 31(10):992–1000.

https://doi.org/10.1089/end.2017.0180 Epub 2017 Sep 20. PMID: 28826249.

11. McAteer JA, Evan AP. The acute and long-term adverse effects of shock wave lithotripsy. Semin

Nephrol. 2008 Mar; 28(2):200–13. https://doi.org/10.1016/j.semnephrol.2008.01.003 PMID: 18359401;

PMCID: PMC2900184.

12. Rodr’guez D, Sacco DE. Minimally invasive surgical treatment for kidney stone disease. Adv Chronic

Kidney Dis. 2015 Jul; 22(4):266–72. https://doi.org/10.1053/j.ackd.2015.03.005 PMID: 26088070.

13. Chew BH, Zavaglia B, Paterson RF, Teichman JM, Lange D, Zappavigna C, et al. A multicenter com-

parison of the safety and effectiveness of ureteroscopic laser lithotripsy in obese and normal weight

patients. J Endourol. 2013 Jun; 27(6):710–4. https://doi.org/10.1089/end.2012.0605 PMID: 23521213.

14. Constanti M, Calvert RC, Thomas K, Dickinson A, Carlisle S. Cost analysis of ureteroscopy (URS) vs

extracorporeal shockwave lithotripsy (SWL) in the management of ureteric stones <10 mm in adults: a

UK perspective. BJU Int. 2020 Mar; 125(3):457–466. https://doi.org/10.1111/bju.14938 Epub 2019 Dec

2. PMID: 31663246.

15. Aboumarzouk OM, Kata SG, Keeley FX, McClinton S, Nabi G. Extracorporeal shock wave lithotripsy

(SWL) versus ureteroscopic management for ureteric calculi. Cochrane Database Syst Rev. 2012 May

16;(5):CD006029. https://doi.org/10.1002/14651858.CD006029.pub4 PMID: 22592707.

16. Sarkissian C, Noble M, Li J, Monga M. Patient decision making for asymptomatic renal calculi: balanc-

ing benefit and risk. Urology. 2013 Feb; 81(2):236–40. https://doi.org/10.1016/j.urology.2012.10.032

PMID: 23374767.

17. National Institute for Health and Care Excellence. 2019. Surgical Treatment Intervention Evidence

Review. NICE guidline NG118.

18. Estrade V, Daudon M, Richard E, Bernhard JC, Bladou F, Robert G, et al. Deep morphological recogni-

tion of kidney stones using intra-operative endoscopic digital videos. Phys Med Biol. 2022 Aug 16; 67

(16). https://doi.org/10.1088/1361-6560/ac8592 PMID: 35905728.

19. Kim YI, Song SH, Park J, Youn HJ, Kweon J, Park HK. Deep-Learning Segmentation of Urinary Stones

in Noncontrast Computed Tomography. J Endourol. 2023 May; 37(5):595–606. https://doi.org/10.1089/

end.2022.0722 PMID: 36924291.

20. Huang ZH, Liu YY, Wu WJ, Huang KW. Design and Validation of a Deep Learning Model for Renal

Stone Detection and Segmentation on Kidney-Ureter-Bladder Images. Bioengineering (Basel). 2023

Aug 16; 10(8):970. https://doi.org/10.3390/bioengineering10080970 PMID: 37627855; PMCID:

PMC10452034.

21. Cellina M, CèM, Rossini N, Cacioppa LM, Ascenti V, Carrafiello G, Floridi C. Computed Tomography

Urography: State of the Art and Beyond. Tomography. 2023 Apr 30; 9(3):909–930. https://doi.org/10.

3390/tomography9030075 PMID: 37218935; PMCID: PMC10204399

22. Choi HS, Kim JS, Whangbo TK, Eun SJ. Improved Detection of Urolithiasis Using High-Resolution

Computed Tomography Images by a Vision Transformer Model. Int Neurourol J. 2023 Nov; 27(Suppl

2):S99–103. https://doi.org/10.5213/inj.2346292.146 Epub 2023 Nov 30. PMID: 38048824; PMCID:

PMC10715832.

23. Asif S, Zhao M, Chen X, Zhu Y. StoneNet: An Efficient Lightweight Model Based on Depthwise Separa-

ble Convolutions for Kidney Stone Detection from CT Images. Interdiscip Sci. 2023 Dec; 15(4):633–

652. https://doi.org/10.1007/s12539-023-00578-8 Epub 2023 Jul 15. PMID: 37452930.

24. Caglayan A, Horsanali MO, Kocadurdu K, Ismailoglu E, Guneyli S. Deep learning model-assisted detec-

tion of kidney stones on computed tomography. Int Braz J Urol. 2022 Sep-Oct; 48(5):830–839. https://

doi.org/10.1590/S1677-5538.IBJU.2022.0132 PMID: 35838509; PMCID: PMC9388181.

25. Alves BM, Belkovsky M, Passerotti CC, Artifon ELA, Otoch JP, Cruz JASD. Use of artificial intelligence

for sepsis risk prediction after flexible ureteroscopy: a systematic review. Rev Col Bras Cir. 2023 Jul 10;

50:e20233561. https://doi.org/10.1590/0100-6991e-20233561-en PMID: 37436288; PMCID:

PMC10508686.

PLOS ONE Prediction of treatment outcomes for shock wave lithotripsy and laser ureterorenoscopy patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0301812 May 2, 2024 15 / 18

https://doi.org/10.1089/end.2019.0717
http://www.ncbi.nlm.nih.gov/pubmed/32030994
https://doi.org/10.1089/end.2016.0110
https://doi.org/10.1089/end.2016.0110
http://www.ncbi.nlm.nih.gov/pubmed/27080725
https://doi.org/10.1089/end.2019.0873
http://www.ncbi.nlm.nih.gov/pubmed/32103689
https://doi.org/10.1089/end.2017.0180
http://www.ncbi.nlm.nih.gov/pubmed/28826249
https://doi.org/10.1016/j.semnephrol.2008.01.003
http://www.ncbi.nlm.nih.gov/pubmed/18359401
https://doi.org/10.1053/j.ackd.2015.03.005
http://www.ncbi.nlm.nih.gov/pubmed/26088070
https://doi.org/10.1089/end.2012.0605
http://www.ncbi.nlm.nih.gov/pubmed/23521213
https://doi.org/10.1111/bju.14938
http://www.ncbi.nlm.nih.gov/pubmed/31663246
https://doi.org/10.1002/14651858.CD006029.pub4
http://www.ncbi.nlm.nih.gov/pubmed/22592707
https://doi.org/10.1016/j.urology.2012.10.032
http://www.ncbi.nlm.nih.gov/pubmed/23374767
https://doi.org/10.1088/1361-6560/ac8592
http://www.ncbi.nlm.nih.gov/pubmed/35905728
https://doi.org/10.1089/end.2022.0722
https://doi.org/10.1089/end.2022.0722
http://www.ncbi.nlm.nih.gov/pubmed/36924291
https://doi.org/10.3390/bioengineering10080970
http://www.ncbi.nlm.nih.gov/pubmed/37627855
https://doi.org/10.3390/tomography9030075
https://doi.org/10.3390/tomography9030075
http://www.ncbi.nlm.nih.gov/pubmed/37218935
https://doi.org/10.5213/inj.2346292.146
http://www.ncbi.nlm.nih.gov/pubmed/38048824
https://doi.org/10.1007/s12539-023-00578-8
http://www.ncbi.nlm.nih.gov/pubmed/37452930
https://doi.org/10.1590/S1677-5538.IBJU.2022.0132
https://doi.org/10.1590/S1677-5538.IBJU.2022.0132
http://www.ncbi.nlm.nih.gov/pubmed/35838509
https://doi.org/10.1590/0100-6991e-20233561-en
http://www.ncbi.nlm.nih.gov/pubmed/37436288
https://doi.org/10.1371/journal.pone.0301812


26. Hong X, Liu G, Chi Z, Yang T, Zhang Y. Predictive model for urosepsis in patients with Upper Urinary

Tract Calculi based on ultrasonography and urinalysis using artificial intelligence learning. Int Braz J

Urol. 2023 Mar-Apr; 49(2):221–232. https://doi.org/10.1590/S1677-5538.IBJU.2022.0450 PMID:

36638148; PMCID: PMC10247237.

27. Nakamae Y, Deguchi R, Nemoto M, Kimura Y, Yamashita S, Kohjimoto Y, et al. AI prediction of extra-

corporeal shock wave lithotripsy outcomes for ureteral stones by machine learning-based analysis with

a variety of stone and patient characteristics. Urolithiasis. 2023 Dec 2; 52(1):9. https://doi.org/10.1007/

s00240-023-01506-7 PMID: 38041695.

28. Rice P, Pugh M, Geraghty R, Hameed BZ, Shah M, Somani BK. Machine Learning Models for Predict-

ing Stone-Free Status after Shockwave Lithotripsy: A Systematic Review and Meta-Analysis. Urology.

2021 Oct; 156:16–22. https://doi.org/10.1016/j.urology.2021.04.006 Epub 2021 Apr 21. PMID:

33894229.

29. Hameed BMZ, Shah M, Naik N, Singh Khanuja H, Paul R, Somani BK. Application of Artificial Intelli-

gence-Based Classifiers to Predict the Outcome Measures and Stone-Free Status Following Percuta-

neous Nephrolithotomy for Staghorn Calculi: Cross-Validation of Data and Estimation of Accuracy. J

Endourol. 2021 Sep; 35(9):1307–1313. https://doi.org/10.1089/end.2020.1136 Epub 2021 May 20.

PMID: 33691473.

30. Chen Z, Zeng DD, Seltzer RGN, Hamilton BD. Automated Generation of Personalized Shock Wave

Lithotripsy Protocols: Treatment Planning Using Deep Learning. JMIR Med Inform. 2021 May 11; 9(5):

e24721. https://doi.org/10.2196/24721 PMID: 33973862; PMCID: PMC8150413.

31. Noble P.A. and Tribou E. Neuroet: an easy-to-use artificial neural network for ecological and biological

modelling. 2007. Ecological Modelling 203:87–98. noble_tribou_2007.pdf

32. Chawla NV, Bowyer KW, Hall LO and Kegelmeyer WP. 2011. SMOTE: Synthetic minority over-sam-

pling technique. J Artificial Intelligence Research 16: 321–357. chawla_2011.pdf

33. Sakr S, Elshawi R, Ahmed AM, Qureshi WT, Brawner CA, Keteyian SJ, et al. Comparison of machine

learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing

(FIT) project. BMC Med Inform Decis Mak. 2017 Dec 19; 17(1):174. https://doi.org/10.1186/s12911-

017-0566-6 PMID: 29258510; PMCID: PMC5735871.

34. Muaz A, Jayabalan M, Thiruchelvam V. A comparison of data sampling techniques for credit card fraud

detection. 2020. International J. Advanced Computer Science and Applications 11:477–485.

35. Waqar M, Dawood H, Dawood H, Majeed N, Banjar A, Alharbey R. An efficient SMOTE-based Deep

Learning model for heart attack prediction. 2020. Scientific Programming Article ID 6621622 https://doi.

org/10.1155/2021/6621622

36. Alghamdi M, Al-Mallah M, Keteyian S, Brawner C, Ehrman J, Sakr S. Predicting diabetes mellitus using

SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project.

PLoS One. 2017 Jul 24; 12(7):e0179805. https://doi.org/10.1371/journal.pone.0179805 PMID:

28738059; PMCID: PMC5524285.

37. Billings WM, Morris CJ, Della Corte D. The whole is greater than its parts: ensembling improves protein

contact prediction. Sci Rep. 2021 Apr 13; 11(1):8039. https://doi.org/10.1038/s41598-021-87524-0

PMID: 33850214; PMCID: PMC8044223.

38. Verma S, Sharma N, Singh A, Alharbi A, Alosaimi W, Alyami H, et al. 2022. An intelligent forecasting

model for disease prediction using stack ensembling approach. Computers, Materials and Continua

70: 6041–6055.

39. Vakalopoulos I. Development of a mathematical model to predict extracorporeal shockwave lithotripsy

outcome. J Endourol. 2009 Jun; 23(6):891–7. https://doi.org/10.1089/end.2008.0465 PMID: 19441881.

40. Shinde S, Al Balushi Y, Hossny M, Jose S, Al Busaidy S. Factors Affecting the Outcome of Extracorpo-

real Shockwave Lithotripsy in Urinary Stone Treatment. Oman Med J. 2018 May; 33(3):209–217.

https://doi.org/10.5001/omj.2018.39 PMID: 29896328; PMCID: PMC5971054.

41. Bovelander E, Weltings S, Rad M, van Kampen P, Pelger RCM, Roshani H. The Influence of Pain on

the Outcome of Extracorporeal Shockwave Lithotripsy. Curr Urol. 2019 Mar 8; 12(2):81–87. https://doi.

org/10.1159/000489424 PMID: 31114465; PMCID: PMC6504796.

42. Cui HW, Silva MD, Mills AW, North BV, Turney BW. Predicting shockwave lithotripsy outcome for uro-

lithiasis using clinical and stone computed tomography texture analysis variables. Sci Rep. 2019 Oct

11; 9(1):14674. https://doi.org/10.1038/s41598-019-51026-x PMID: 31604986; PMCID: PMC6788981.

43. Abe T, Akakura K, Kawaguchi M, Ueda T, Ichikawa T, Ito H, et al. Outcomes of shockwave lithotripsy

for upper urinary-tract stones: a large-scale study at a single institution. J Endourol. 2005 Sep; 19

(7):768–73. https://doi.org/10.1089/end.2005.19.768 PMID: 16190825.

44. Chiang BJ, Liao CH, Lin YH. The efficacy of extracorporeal shockwave lithotripsy for symptomatic ure-

teral stones: Predictors of treatment failure without the assistance of computed tomography. PLoS One.

PLOS ONE Prediction of treatment outcomes for shock wave lithotripsy and laser ureterorenoscopy patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0301812 May 2, 2024 16 / 18

https://doi.org/10.1590/S1677-5538.IBJU.2022.0450
http://www.ncbi.nlm.nih.gov/pubmed/36638148
https://doi.org/10.1007/s00240-023-01506-7
https://doi.org/10.1007/s00240-023-01506-7
http://www.ncbi.nlm.nih.gov/pubmed/38041695
https://doi.org/10.1016/j.urology.2021.04.006
http://www.ncbi.nlm.nih.gov/pubmed/33894229
https://doi.org/10.1089/end.2020.1136
http://www.ncbi.nlm.nih.gov/pubmed/33691473
https://doi.org/10.2196/24721
http://www.ncbi.nlm.nih.gov/pubmed/33973862
https://doi.org/10.1186/s12911-017-0566-6
https://doi.org/10.1186/s12911-017-0566-6
http://www.ncbi.nlm.nih.gov/pubmed/29258510
https://doi.org/10.1155/2021/6621622
https://doi.org/10.1155/2021/6621622
https://doi.org/10.1371/journal.pone.0179805
http://www.ncbi.nlm.nih.gov/pubmed/28738059
https://doi.org/10.1038/s41598-021-87524-0
http://www.ncbi.nlm.nih.gov/pubmed/33850214
https://doi.org/10.1089/end.2008.0465
http://www.ncbi.nlm.nih.gov/pubmed/19441881
https://doi.org/10.5001/omj.2018.39
http://www.ncbi.nlm.nih.gov/pubmed/29896328
https://doi.org/10.1159/000489424
https://doi.org/10.1159/000489424
http://www.ncbi.nlm.nih.gov/pubmed/31114465
https://doi.org/10.1038/s41598-019-51026-x
http://www.ncbi.nlm.nih.gov/pubmed/31604986
https://doi.org/10.1089/end.2005.19.768
http://www.ncbi.nlm.nih.gov/pubmed/16190825
https://doi.org/10.1371/journal.pone.0301812


2017 Sep 20; 12(9):e0184855. https://doi.org/10.1371/journal.pone.0184855 PMID: 28931028;

PMCID: PMC5607160.

45. Erkoc M, Bozkurt M, Besiroglu H, Canat L, Atalay HA. Success of extracorporeal shock wave lithotripsy

based on CT texture analysis. Int J Clin Pract. 2021 Nov; 75(11):e14823. https://doi.org/10.1111/ijcp.

14823 Epub 2021 Sep 15. PMID: 34491588.

46. Cho KS, Jung HD, Ham WS, Chung DY, Kang YJ, Jang WS, et al. Optimal Skin-to-Stone Distance Is a

Positive Predictor for Successful Outcomes in Upper Ureter Calculi following Extracorporeal Shock

Wave Lithotripsy: A Bayesian Model Averaging Approach. PLoS One. 2015 Dec 14; 10(12):e0144912.

https://doi.org/10.1371/journal.pone.0144912 PMID: 26659086; PMCID: PMC4699456.

47. Lee HY, Yang YH, Lee YL, Shen JT, Jang MY, Shih PM, et al. Noncontrast computed tomography fac-

tors that predict the renal stone outcome after shock wave lithotripsy. Clin Imaging. 2015 Sep-Oct; 39

(5):845–50. https://doi.org/10.1016/j.clinimag.2015.04.010 Epub 2015 Apr 25. PMID: 25975631.

48. Waqas M, Saqib IU, Imran Jamil M, Ayaz Khan M, Akhter S. Evaluating the importance of different com-

puted tomography scan-based factors in predicting the outcome of extracorporeal shock wave litho-

tripsy for renal stones. Investig Clin Urol. 2018 Jan; 59(1):25–31. https://doi.org/10.4111/icu.2018.59.1.

25 Epub 2017 Dec 28. PMID: 29333511; PMCID: PMC5754579.

49. Ali Beigi MF, Keivani Hafshejani Z, Aghahoseini M, Shirani M. Impact of body mass index on success,

complications and failure of extracorporeal shock wave lithotripsy. J Renal Inj Prev. 2019; 8(3):221–

224. https://doi.org/10.15171/jrip.2019.41

50. Bajaj M, Smith R, Rice M, Zargar-Shoshtari K. Predictors of success following extracorporeal shock-

wave lithotripsy in a contemporary cohort. Urol Ann. 2021 Jul-Sep; 13(3):282–287. https://doi.org/10.

4103/UA.UA_155_19 Epub 2021 Jul 14. PMID: 34421266; PMCID: PMC8343291.

51. Nakasato T, Morita J, Ogawa Y. Evaluation of Hounsfield Units as a predictive factor for the outcome of

extracorporeal shock wave lithotripsy and stone composition. Urolithiasis. 2015 Feb; 43(1):69–75.

https://doi.org/10.1007/s00240-014-0712-x Epub 2014 Aug 20. PMID: 25139151.

52. Nielsen TK, Jensen JB. Efficacy of commercialised extracorporeal shock wave lithotripsy service: a

review of 589 renal stones. BMC Urol. 2017 Jul 27; 17(1):59. https://doi.org/10.1186/s12894-017-0249-

8 PMID: 28750620; PMCID: PMC5532761.

53. Fankhauser CD, Hermanns T, Lieger L, Diethelm O, Umbehr M, LuginbŸhl T, et al. Extracorporeal
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